3 research outputs found

    Tackling Distribution Shift - Detection and Mitigation

    Get PDF
    One of the biggest challenges of employing supervised deep learning approaches is their inability to perform as well beyond standardized datasets in real-world applications. Therefore, abrupt changes in the form of an outlier or overall changes in data distribution after model deployment result in a performance drop. Owing to these changes that induce distributional shifts, we propose two methodologies; the first is the detection of these shifts, and the second is adapting the model to overcome the low predictive performance due to these shifts. The former usually refers to anomaly detection, the process of finding patterns in the data that do not resemble the expected behavior. Understanding the behavior of data by capturing their distribution might help us to find those rare and uncommon samples without the need for annotated data. In this thesis, we exploit the ability of generative adversarial networks (GANs) in capturing the latent representation to design a model that differentiates the expected behavior from deviated samples. Furthermore, we integrate self-supervision into generative adversarial networks to improve the predictive performance of our proposed anomaly detection model. In addition, to shift detection, we propose an ensemble approach to adapt a model under varied distributional shifts using domain adaptation. In summary, this thesis focuses on detecting shifts under the umbrella of anomaly detection as well as mitigating the effect of several distributional shifts by adapting deep learning models using a Bayesian and information theory approach

    Transparent Anomaly Detection via Concept-based Explanations

    Full text link
    Advancements in deep learning techniques have given a boost to the performance of anomaly detection. However, real-world and safety-critical applications demand a level of transparency and reasoning beyond accuracy. The task of anomaly detection (AD) focuses on finding whether a given sample follows the learned distribution. Existing methods lack the ability to reason with clear explanations for their outcomes. Hence to overcome this challenge, we propose Transparent {A}nomaly Detection {C}oncept {E}xplanations (ACE). ACE is able to provide human interpretable explanations in the form of concepts along with anomaly prediction. To the best of our knowledge, this is the first paper that proposes interpretable by-design anomaly detection. In addition to promoting transparency in AD, it allows for effective human-model interaction. Our proposed model shows either higher or comparable results to black-box uninterpretable models. We validate the performance of ACE across three realistic datasets - bird classification on CUB-200-2011, challenging histopathology slide image classification on TIL-WSI-TCGA, and gender classification on CelebA. We further demonstrate that our concept learning paradigm can be seamlessly integrated with other classification-based AD methods.Comment: Accepted at Neurips XAI in Action worksho

    AdaBest: Minimizing Client Drift in Federated Learning via Adaptive Bias Estimation

    Full text link
    In Federated Learning (FL), a number of clients or devices collaborate to train a model without sharing their data. Models are optimized locally at each client and further communicated to a central hub for aggregation. While FL is an appealing decentralized training paradigm, heterogeneity among data from different clients can cause the local optimization to drift away from the global objective. In order to estimate and therefore remove this drift, variance reduction techniques have been incorporated into FL optimization recently. However, these approaches inaccurately estimate the clients' drift and ultimately fail to remove it properly. In this work, we propose an adaptive algorithm that accurately estimates drift across clients. In comparison to previous works, our approach necessitates less storage and communication bandwidth, as well as lower compute costs. Additionally, our proposed methodology induces stability by constraining the norm of estimates for client drift, making it more practical for large scale FL. Experimental findings demonstrate that the proposed algorithm converges significantly faster and achieves higher accuracy than the baselines across various FL benchmarks.Comment: AdaBes
    corecore